
A Software System for Modeling and 
Controlling Accelerator Physics Parameters 

at the Advanced Light Source * 

L. Schachinger and V. Paxson 
Lawrence Berkel~y Laboratory 

Berkeley, CA 94720 

Abstract 

We describe a software system used at the Advanced Light 
Source for accelerator physics studies and accelerator control. 
The system consists of a number of Unix processes that can be 
connected together in modular ways. Processes communicate 
using messages with a common data, format, but processes do 
not know where their messages come from or go to, making each 
process easily replaceable by others using different algorithms, 
measurement techniques, or models. Some of the controls and 
correction functions we have implemented using the system are 
closed-orbit correction, continuous tune display, and Fourier 
analysis of turn-by-turn beam position monitor data. 

INTRODUCTION 

Over the lifetime of an accelerator, and particularly in the 
commissioning phase, programs which measure and correct 
machine parameters can change significantly. For instance, 
at the ALS our current orbit correction algorithm is the lo
cal bump method, but we plan to implement an algorithm 
based on SVD in the near future. As diagnostics come on 
line and are better understood, preferred methods for mea
suring a particular parameter change. Currently we use a 
model to calculate tunes from magnet currents, but soon 
we will read the tunes from a spectrum analyser, or per
form an FFT of turn-by-turn data from the BPM's. These 
circumstances cry out for a modular, flexible approach, so 
that new correction algorithms or measurement techniques 
can be substituted and compared easily. 

TOOLBOX PHILOSOPHY 

We have long advocated a "toolbox" approach to build
ing accelerator simulation and control software[l]. This 
approach emphasizes building applications by plugging to
gether modular, single-function programs. The goal is 

"'Work supported by Director, Office of Energy Research, Office of 
Basic Energy Sciences, Materials Sciences Division, U.S. Department 
of Energy under Contract Number DE-AC03-76SF00098. 

to avoid monolithic, buggy, hard-to-maintain applications, 
and instead to stress having the flexibility to rapidly piece 
together new applications as the need arises. 

Crucial to this approach is the modularity of the indi
vidual programs that comprise the toolbox. Each of these 
programs must be wholly self-contained; if we are to be 
able to connect the programs together in unforeseen ways, 
the programs must not assume anything about what other 
programs they might communicate with. 

We can achieve this degree of modularity by making the 
programs event-oriented. By event-oriented, we mean that 
we write programs in terms of events they receive, telling 
them what to do; and events they generate, publishing the 
results of whatever they did. Each event is a name (e.g., 
"compute tune") and a value (typed data associated with 
the event). Event values can be quite large, as programs 
may have to communicate a large amount of data (e.g., 
computed X and Y betas at every BPM and corrector). 

Programs do not know anything about where the events 
they receive came from, nor where the events they generate 
go to. In this way, programs remain completely modular. 
By making the events generated by one program become 
the events received by another, we can forge a new ap
plication from the two programs even though neither was 
written with any knowledge of the other. 

THE GLISH SOFTWARE Bus 

An environment for connecting together these sorts of 
modular programs is sometimes called a software bus, in 
analogy with hardware busses that enable independently
designed hardware components to interoperate. The soft
ware bus we use, called Glish[4], was designed with accel
erator applications in mind. 

While programs are written for use with Glish in an 
event-oriented style, Glish does not limit the names of the 
events used by a program nor the structure of the asso
ciated data. At first this might seem like granting the 
program writers too much freedom, since how can the pro
grams communicate if they don't agree on data formats 
and naming conventions? 

The answer lies in Glish's chief strength: Glish provides 
an interpreted scripting language, similar to that used in 



shell programming, for piecing together applications from 
individual Glish programs. These scripts not only specify 
which programs to run, but can dynamically control what 
should be done whenever any of the programs generates 
a particular event. Here, "what should be done" includes 
possibly routing the event to another program (perhaps 
renaming it), and modifying the event's associated data. 
Thus Glish offers a powerful sort of "glue" that we can 
use both to connect disparate programs, and to overcome 
their incompatibilities. If, for example, we want to use pro
grams written with different physical units, or sign conven
tions, or data structures, a Glish script can readily provide 
on-the-fly conversion between the two programs, without 
requiring any modification of any source code. 

A final benefit of Glish is that it supports transparent 
networking. Glish programs can run on different hosts and 
never know that their events travel over a network. 

ORBIT CORRECTION ApPLICATION 

One of our principle simulation and control applications 
for the ALS is orbit correction. The present application 
we describe here evolved from that described in [3]. 

On the face of it, correcting the orbit of an accelerator 
is a simple task. Given the machine's current trajectory, 
calculate the corrector settings necessary to flatten the tra
jectory; apply the new settings; and we're done. So simple 
that we might be tempted to write a single program to 
deal with the entire task. 

In reality, though, many other factors enter into the ap
plication, and greatly complicate it. Correctors or moni
tors may be broken, disabled, or untrustworthy. We might 
need to use different hardware to read the first turn tra
jectory, before beam is stored, than the closed orbit, and a 
different correction algorithm in the two cases. We might 
want to average the position readings over a variable num
ber of turns. Beam position monitors (BPMs) have offsets 
due to engineering errors, correctors have calibration fac
tors for converting between radians of angle and amperes 
of current. We may have to apply corrections in steps, to 
avoid risking beam loss from overzealous correction. We 
may be able to use nominal phase and beta information 
for the accelerator, or want to calculate more precise val
ues. Our "goal orbit" may change from a flat trajectory 
for stored beam, to a betatron oscillation when injecting. 

Finally, we want a single application that can correct the 
orbit for both the ALS booster and the storage ring, taking 
into account all of the above factors. And we want to use 
this same application on-line, correcting the actual orbit, 
off-line for simulation using a modeling program instead of 
the actual hardware, and with data we previously archived, 
to try alternative correction strategies. 

Figure 1 shows how we built the orbit correction ap
plication using Glish. The boxes along the left and right 
edges represent different Glish programs, all of which con
nect to the central software bus. The dotted box at the 

bottom represents static information that the Glish inter
preter reads from data files and disseminates to those pro
grams needing it. 

The "Simulation / Accelerator" box represents one of 
two programs: either our modeling program (Teapot), for 
simulating orbit correction, or access to the actual accel
erator hardware, for on-line orbit correction. The Glish 
script picks which of these two programs to use based on 
the script's run-time arguments. 

Arrows indicate the events received and produced by 
each program. Note that there is not necessarily a one
to-one correspondence between an event produced by one 
program and an event sent to another program. Sometimes 
the Glish script itself deals directly with these events. For 
example, while the User Interface might request the cur
rent trajectory using a "get orbit" event, the Glish script 
decides whether to pass that event along to Simulation / 
Accelerator as a "get closed orbit" event, or whether to 
use the separate program for First Turn BPM Readouts. 
In the latter case, the script must send several different 
events to the program, one first to trigger the hardware, 
and then ones to read the X, Y, and signal sum values. 
Each of these elicits a separate event in response. 

Picking between these two sources for the current -or
bit illustrates a key point: the system can accommodate 
two very different ways of getting the beam position data, 
and it does so transparently to all of the other programs 
involved in the application. 

The orbit-correction application achieves all of the goals 
outlined above: we use it for both the ALS booster and 
the storage ring, both on-line, off-line to examine archived 
data, and off-line for simulation. A considerable amount 
of the application is done directly in the Glish script: con
verting between the units and sign conventions used by the 
different programs, incorporating BPM offsets and correc
tor calibration factors, averaging trajectories over multiple 
turns, applying fractional corrections, modifying first-turn 
readings based on the signal sum values, computing trajec
tory and correction statistics, and enforcing "fixed status" 
(e.g., "always off") for devices whose status is erroneously 
reported by the hardware. 

TURNPLOT ApPLICATION 

Another application we built using Glish is tump/ot, a pro
gram for analyzing beam position data[2]. Turnplot is 
structurally simpler than orbit correction, but maintains 
the property that it can be run on either the ALS booster 
or the storage ring, using either live hardware readings, 
tracking data produced by a modeling program, or previ
ously archived data. Turnplot can analyze either a single, 
full turn of data (taken at each BPM), or an orbit scanned 
over every nth turn at a specified BPM. 

Turnplot can display tracking data as a turn-by-turn 
point plot, as a phase space plot, or as X/Y data. In addi
tion, we can FFT tracking data to identify probable X, Y, 



User 
Interface 

Correction 
Algorithm 

correct orbit 
save/load state 
set monitor 
set corrector 
first turn 
corrector frac 
load BPM offsets 
get orbit 
get correctors 
get goal orbit 
get twiss 

" .... -,------
set correctors 
set orbit 
archive done 
displ.ay Twiss 

init 
correct orbit .... -----------------

-----------------,~ 
correction 

Goal I-Jlet goal orbit 

Orbit 
~ ____________ ~ goal orbit " 

t 

init 
get correctors 
set correctors 
get closed orbit 

• 
.... ,--~~----------

init done 
correctors 
cl.osed orbit 

trigger 
x, y, sum 

" .... 
triggered 
xvalues 
yvalues 
sumvalues 

get Twiss 

• 
Twiss 

Simulation 

Accelerator 

First Turn 
BPM Readouts 

Twiss 

'---------------~ 

save w load 

• 
save status 
l.oad val.ues 

__ -------"- [ Archiving [ 

r------------------, , , 
i Element names, positions, nominal phaselbeta 1 

i Nominal tunes, physical aperture i 
i BPM offsets, corrector calibrations, fixed device status I , , 
1 ______ --------______ 1 

Figure 1: Structure of Orbit Correction Application 

and synchrotron tunes, display harmonics associated with 
those tunes, select alternate FFT peaks if a peak found au
tomatically appears unlikely, and display resonance plots 
for the identified tunes. 

TUNEPLOT ApPLICATION 

A third application is t~neplot, for analyzing and control
ling the machine tune. Tuneplot displays the current tune 
values on a resonance diagram. Like turnplot, tuneplot has 
no knowledge of where the tune values come from, so they 
can be changed transparently, including using a spectrum 
analyzer, the BPM hardware, and values computed from 
the present magnet currents. Because whenever tuneplot 
is sent a "tune read back" event it updates its display, 
we can use tuneplot to continuously display the tune, com
puted in "real time", without the program having any spe
cial provision for such a display. 

FUTURE WORK 

Other applications planned and in progress are one to mea
sure and correct chromaticity, another to measure and cor
rect betas (both by varying quadrupole strengths and mea-

suring tunes, and by reading turn-by-turn data from all 
the BPM's while exciting a betatron oscillation), one to 
measure and correct dispersion, and one to measure and 
correct linear coupling. 

REFERENCES 

[1] V. Paxson, C. Aragon, S. Peggs, C. Saltmarsh, and L. 
Schachinger, "A Unified Approach to Building Accel
erator Simulation Software for the SSC," Proc. 1989 
IEEE Particle Accelerator Conf., Chicago, IL. 

[2] V. Paxson and L. Schachinger, "Turnplot: A Graphical 
Tool for Analyzing Tracking Data," Proc. 1991 IEEE 
Particle Accelerator Conf., San Francisco, CA. 

[3] J. Bengtsson, E. Forest, H. Nishimura, and L. 
Schachinger, "Modeling in Control of the Advanced 
Light Source," Proc. 1991 IEEE Particle Accelerator 
Conf., San Francisco, CA. 

[4] V. Paxson and C. Saltmarsh, "Glish: A User-Level 
Software Bus for Loosely-Coupled Distributed Sys
tems," Proc. 1993 Winter USENIX Conf., San Diego, 
CA. 


